ANALYSIS OF THE SALES POTENTIAL OF BUMDES PRODUCTS USING THE K-MEANS CLUSTERING ALGORITHM

Authors

  • Arifin Universitas Pembangunan Panca Budi
  • Zulham Sitorus Universitas Pembangunan Panca Budi
  • Muhammad Iqbal Universitas Pembangunan Panca Budi
  • Andysah Putera Utama Siahaan Universitas Pembangunan Panca Budi
  • Sri Wahyuni Universitas Pembangunan Panca Budi

Keywords:

Business Intelligence, BUMDes, K-Means Clustering

Abstract

This research aims to measure the strategy and potential of Village-Owned Enterprises (BUMDes) in Tandam Hulu II Village using Business Intelligence (BI) Tools supported by the K-Means Clustering method. BI Tools is used to analyze the performance and potential of BUMDes, while K-Means Clustering groups community data based on economic, social, and demographic characteristics. The results of the study show that BI Tools helps BUMDes accurately map the economic potential of villages and develop appropriate development strategies. Clustering analysis allows the identification of community groups with similar characteristics, so that BUMDes programs can be tailored to the specific needs of each cluster. This implementation also improves operational efficiency by focusing resources on high-potential sectors. In conclusion, the implementation of BI Tools and K-Means Clustering supports data-based decision-making in BUMDes, maximizes the economic potential of villages, and encourages sustainable economic growth.

References

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), 3(1), 46-56.

Undang-Undang Nomor 6 Tahun 2014 tentang Desa di Indonesia UU No. 6 Tahun 2014 Tentang Desa. https://peraturan.bpk.go.id/Details/38582/uu-no-6-tahun-2014 (Accessed on 11 nov 2024

) Ariasa, K., I. G. A. Gunadi. dan I. M. Candiasa. 2020. Optimasi Algoritma Klaster Dinamis pada K-Means dalam Pengelompokkan Kinerja Akademik Mahasiswa (Studi Kasus: Universitas Pendidikan Ganesha). Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI. 9(2): 181–193.

E. Marvaro and R. S. Samosir, “Penerapan Business Intelligence danVisualisasi Informasi di CV. Mitra Makmur Dengan Menggunakan Dashboard Tableau,” J. Sains dan Teknol., vol. 8, pp. 1–10, 2021.

Erniati. (2019). Laporan Keuangan Pemerintah Seagai Wujud Akuntabilitas PengelolaanKeuanganNegara.https://djpb.kemenkeu.go.id/kanwil/sulteng/id/d

Nishom, M. 2019. Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT. 4(1): 20–24. https://doi.org/10.30591/jpit.v4i1.1253.

Arifah, M. N., & Kusumastuti, N. (2019). Strategi Mempercepat Pembangunan Desa Mandiri: Studi di Desa Kemadang Gunungkidul. Jurnal Pemberdayaan Masyarakat: Media Pemikiran Dan Dakwah Pembangunan, 2(1), 169–188. https://doi.org/10.14421/jpm.2018.021-09.

Strategi BUMDES dalam Upaya Pengembangan Desa Wisata Berbasis Potensi Desa Untuk Meningkatkan Pendapatan Asli Desa (https://www.ejournal.unma.ac.id/index.php/maro/article/view/11743)

A. Priyatna, “Implementasi Sistem Penunjang Keputusan Menggunakan Business Intelligence Untuk UMKM Di Gunung Putri Kab. Bogor,” JURNAL KHATULISTIWA INFORMATIKA, vol. 7, no. 1, pp. 7–12, 2019

El Deen, M. A., & Solayman, M. M. (2015). Maximizing strategic performance results: Adopting balanced scorecards and BI tools. International Journal of Computer Applications, 117

Downloads

Published

03-03-2025

How to Cite

Arifin, Zulham Sitorus, Muhammad Iqbal, Andysah Putera Utama Siahaan, & Sri Wahyuni. (2025). ANALYSIS OF THE SALES POTENTIAL OF BUMDES PRODUCTS USING THE K-MEANS CLUSTERING ALGORITHM. International Journal Of Computer Sciences and Mathematics Engineering, 4(1), 19–27. Retrieved from https://ijecom.org/index.php/IJECOM/article/view/100

Issue

Section

Articles