Analysis of SVM Algorithm And SMOTE Technique on Public Sentiment With Google Maps Reviews Towards The Quality of Education at LP3I Across Indonesia
Keywords:
Sentiment Analysis, Support Vector Machine, SMOTE, Google Maps Reviews, LP3I EducationAbstract
This study analyzes public sentiment toward LP3I’s education quality in Indonesia using the Support Vector Machine (SVM) algorithm and the Synthetic Minority Over-sampling Technique (SMOTE). Reviews from Google Maps were collected, preprocessed, translated, and labeled using the Natural Language Toolkit (NLTK). The classification model was tested with and without SMOTE to address class imbalance. The results show that applying SMOTE improves the model’s ability to detect neutral and negative sentiments, increasing accuracy from 86.93% to 88.44% and significantly enhancing recall for minority classes. However, while SMOTE helps create a more balanced classification, it also introduces a potential risk of overfitting due to synthetic data generation. Overall, the integration of SVM and SMOTE improves sentiment classification performance, providing valuable insights for LP3I to enhance its academic and administrative services based on public perception.
References
W. Khofifah, D. N. Rahayu, and A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 16, no. 4, pp. 28–38, Jan. 2022, doi: 10.35969/interkom.v16i4.192.
D. S. Utami, A. Erfina, and M. A. Id, “Analisis Sentimen Ulasan Terkait UNESCO Global Geopark Di Google Maps dengan Algoritma Naive Bayes,” 2022.
Z. Sitorus, M. Saputra, S. N. Sofyan, and Susilawati, “SENTIMENT ANALYSIS OF INDONESIAN COMMUNITY TOWARDS ELECTRIC MOTORCYCLES ON TWITTER USING ORANGE DATA MINING,” INFOTECH journal, vol. 10, no. 1, May 2024, doi: 10.31949/infotech.v10i1.9374.
M. Awaludin and A. G. Gani, “PEMANFAATAN KECERDASAN BUATAN PADA ALGORITMA K-MEANS KLASTERING DAN SENTIMENT ANALYSIS TERHADAP STRATEGI PROMOSI YANG SUKSES UNTUK PENERIMAAN MAHASISWA BARU,” Jurnal Sistem Informasi, vol. 11, pp. 1–6, 2024, doi: https://doi.org/10.35968/jsi.v11i1.1120.
J. Anggraini and D. Alita, “Implementasi Metode SVM Pada Sentimen Analisis Terhadap Pemilihan Presiden (Pilpres) 2024 Di Twitter,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 2, pp. 102–111, Aug. 2024, doi: 10.30591/jpit.v9i2.6560.
G. Aliman et al., “Sentiment Analysis using Logistic Regression Sentiment Analysis using Logistic Regression,” Journal of Computational Innovations and Engineering Applications, vol. 7, no. 1, pp. 35–40, Jul. 2022.
R. Turaina, R. Saputra, S. Informasi, U. Metamedia, and J. Khatib Sulaiman Dalam, “Optimalisasi Klasifikasi Umpan Balik Mahasiswa Terhadap Layanan Kampus dengan Sinergi Random Forest dan Smote,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 6, no. 6, 2023.
F. Novitasari, E. Haerani, A. Nazir, J. Jasril, and F. Insani, “Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3610.
T. A. Dewi and E. Mailoa, “PERBANDINGAN IMPLEMENTASI METODE SMOTE PADA ALGORITMA SUPPORT VECTOR MACHINE (SVM) DALAM ANALISIS SENTIMEN OPINI MASYARAKAT TENTANG MIXUE,” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 4, no. 3, pp. 849–855, Sep. 2023, doi: 10.35870/jimik.v4i3.289.
F. Destiyanti, A. Id Hadiana, F. Rakhmat Umbara, and U. Jenderal Achmad Yani Jl Terusan Jenderal Jenderal Sudirman, “Penerapan Metode Support Vector Machine dan SMOTE untuk Klasifikasi Sentimen Publik Terhadap Polisi Republik Indonesia,” Jurnal Masyarakat Informatika Unjani, vol. 8, no. 1, pp. 1–15, 2024, doi: https://doi.org/10.26874/jumanji.v8i1.336.
N. Hafidz and D. Yanti Liliana, “Klasifikasi Sentimen pada Twitter Terhadap WHO Terkait Covid-19 Menggunakan SVM, N-Gram, PSO,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 213–219, Apr. 2021, doi: 10.29207/resti.v5i2.2960.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” 2021.
P. W. Rahayu et al., BUKU AJAR DATA MINING, 1st ed., vol. 1. Jambi: PT. Sonpedia Publishing Indonesia, 2024. [Online]. Available: https://www.researchgate.net/publication/377415198
B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 2, Aug. 2021, doi: 10.30813/jbase.v4i2.3000.
A. Fatkhudin, F. Adi Artanto, N. Abiyu Safli, and D. Wibowo, “Remik: Riset dan E-Jurnal Manajemen Informatika Komputer Decision Tree Berbasis SMOTE dalam Analisis Sentimen Penggunaan Artificial Intelligence untuk Skripsi,” Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 8, no. 2, pp. 494–505, 2024, doi: 10.33395/remik.v8i2.13531.
S. Sofyan and A. Prasetyo, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Data Tidak Seimbang Pada Tingkat Pendapatan Pekerja Informal Di Provinsi D.I. Yogyakarta Tahun 2019,” 2021.
D. Purnamasari et al., Pengantar Metode Analisis Sentimen, 1st ed. Depok: Gunadarma Penerbit, 2023.
A. Aditya et al., MACHINE LEARNING, vol. 1. GLOBAL EKSEKUTIF TEKNOLOGI, 2023. [Online]. Available: www.globaleksekutifteknologi.co.id
A. Mulyoto, NAÏVE BAYES PADA GOOGLE COLABS. EUREKA MEDIA AKSARA, 2024.
R. G. Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal Of Computer Sciences and Mathematics Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGHT
Copyright of any article in the International Journal of Computer Sciences and Mathematics Engineering is held by the author under a Creative Commons Attribution-ShareAlike 4.0 International License.
- The author acknowledges that the International Journal Of Computer Sciences and Mathematics Engineering has the right to be the first to publish under a Creative Commons Attribution-ShareAlike 4.0 International License – CC BY-SA.
- Authors can submit articles separately, arrange for non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional respository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the International Journal of Computer Sciences and Mathematics Engineering.
LICENCE
The International Journal Of Computer Sciences and Mathematics Engineering is published under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License. This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivatives of this material for any purpose, including commercial purposes, as long as they give credit to the Author for the original work.