Design Information Systems for Malnutrition Analysis Apriori Algorithm

Authors

  • Indri Sulistianingsih Universitas Pembangunan Panca Budi
  • Wirda Fitriani Universitas Pembangunan Panca Budi
  • Darmeli Nasution Universitas Pembangunan Panca Budi

DOI:

https://doi.org/10.61306/ijecom.v2i2.45

Keywords:

Apriori, Data Mining, Malnutrition

Abstract

Malnutrition drives lasting detriments across individual and community wellbeing, requiring data-informed action. Advanced analytics through information systems present pathways for revelatory pattern detection from multidimensional health data. This paper outlines a system design encompassing preprocessing, modeling, analysis and interpretation techniques for mining malnutrition dataset through Apriori algorithm. The core data mining methodology enables extraction of frequencies, associations and prediction rules linking nutritional status parameters and food intake patterns. Custom algorithms filter results to high-confidence associations via statistical measures before expert evaluation. System testing verifies accurate architecture for surfaced dietary risk factors of malnutrition down to village-level. The systemization and computational augmentation of health insight derivation provides a template for needs-based analytics platforms. By targeting analysis to community data, impactful interventions become possible. The potential of customized information systems with data mining at the core is highlighted alongside domain challenges requiring cross-disciplinary impetus. The data-to-decisions system with embedded Apriori pipelines demonstrates applied informatics transforming malnutrition strategy through unveiling actionable patterns within intricacies of public welfare data.

References

A. Ramdhani, H. Handayani, and A. Setiawan, “Hubungan Pengetahuan Ibu Dengan Kejadian Stunting,” in Prosiding Seminar Nasional LPPM UMP, 2021, pp. 28–35.

E. C. Wulandari, H. S. Wijayanti, N. Widyastuti, B. Panunggal, F. Ayustaningwarno, and A. Syauqy, “Hubungan Stunting Dengan Keterlambatan Perkembangan Pada Anak Usia 6-24 Bulan,” Journal of Nutrition College, vol. 10, no. 4, pp. 304–312, Dec. 2021, doi: 10.14710/jnc.v10i4.31114.

A. Alpin, “Hubungan Karakteristik Ibu dengan Status Gizi Buruk Balita di Wilayah Kerja Puskesmas Tawanga Kabupaten Konawe,” Nursing Care and Health Technology Journal (NCHAT), vol. 1, no. 2, pp. 87–93, 2021.

S. Wahyuni, I. Sulistianingsih, Hermansyah, E. Hariyanto, and O. Cindi Veronika Lumbanbatu, “Data Mining Prediksi Minat Customer Penjualan Handphone Dengan Algoritma Apriori,” JURNAL UNITEK, vol. 14, no. 2, pp. 10–19, Dec. 2021, doi: 10.52072/unitek.v14i2.243.

M. Sornalakshmi et al., “An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 390–403, 2021.

H. Xie, “Research and case analysis of apriori algorithm based on mining frequent item-sets,” Open J Soc Sci, vol. 9, no. 04, p. 458, 2021.

F. Lv, “Data Preprocessing and Apriori Algorithm Improvement in Medical Data Mining,” in 2021 6th International Conference on Communication and Electronics Systems (ICCES), IEEE, 2021, pp. 1205–1208.

S. De, S. Dey, S. Bhatia, and S. Bhattacharyya, “An introduction to data mining in social networks,” in Advanced Data Mining Tools and Methods for Social Computing, Elsevier, 2022, pp. 1–25. doi: 10.1016/B978-0-32-385708-6.00008-4.

C. Wang and X. Zheng, “Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint,” Evol Intell, vol. 13, no. 1, pp. 39–49, 2020.

B. S. dos Santos, M. T. A. Steiner, A. T. Fenerich, and R. H. P. Lima, “Data mining and machine learning techniques applied to public health problems: A bibliometric analysis from 2009 to 2018,” Comput Ind Eng, vol. 138, p. 106120, 2019.

A. Hora, “Characterizing top ranked code examples in Google,” Journal of Systems and Software, vol. 178, p. 110971, Aug. 2021, doi: 10.1016/j.jss.2021.110971.

Downloads

Published

30-11-2023

How to Cite

Indri Sulistianingsih, Wirda Fitriani, & Darmeli Nasution. (2023). Design Information Systems for Malnutrition Analysis Apriori Algorithm . International Journal Of Computer Sciences and Mathematics Engineering, 2(2), 225–230. https://doi.org/10.61306/ijecom.v2i2.45