Optimizing the Diet of Diabetes Mellitus Sufferers Through Food Mapping Using the Fuzzy Sugeno Method

Authors

  • Randi Rian Putra Universitas Pembangunan Panca Budi
  • Sri Handayani Universitas Pembinaan Masyarakat Indonesia
  • Cendra Wadisman Universitas Pembinaan Masyarakat Indonesia

DOI:

https://doi.org/10.61306/ijecom.v2i2.50

Keywords:

Diabetes mellitus, Diet, Fuzzy Sugeno, Food Mapping, Blood Sugar Management

Abstract

This research focuses on developing optimal strategies for diet management for Diabetes Mellitus (DM) sufferers by utilizing the Fuzzy Sugeno method in food mapping. Diabetes Mellitus is a chronic metabolic disease that requires a careful management approach to diet to control blood sugar levels. In this study, we designed a system that uses Sugeno's fuzzy principles to categorize foods based on glycemic parameters, nutritional content, and individual patient characteristics. This method allows the formation of fuzzy rules that cover the variability and complexity in the preferences and health needs of each patient. The developed model was tested using DM patient data involving detailed information about diet, medical history and blood sugar response. Experimental results show that this approach can provide more personalized diet recommendations that suit individual health conditions. The application of the Fuzzy Sugeno method in food mapping for DM patients is expected to increase patient compliance with the recommended diet, reduce blood sugar levels, and overall, improve quality of life. Additionally, this approach also provides a foundation for the development of adaptive dietary management systems, which can continuously adapt to changing patient health needs over time.

References

A. F. Tasidjawa, I. P. Saputro, and T. C. Suwanto, “Penerapan Fuzzy Logic Tsukamoto Untuk Penentuan Suhu Ideal Pada Kandang Ayam Broiler,” J. Ilm. Realt., vol. 14, no. 1, pp. 42–48, 2018, doi: 10.52159/realtech.v14i1.115.

O. Veronica, “Perbandingan Metode Fuzzy dan Metode Perceptron untuk Mengecek Status Gizi pada Anak,” J. Ultim., vol. 6, no. 1, pp. 30–35, 2014, doi: 10.31937/ti.v6i1.330.

S. Levianto and A. A. Soebroto, “Sistem Pakar Diagnosis Penyakit Leukimia dengan Metode Fuzzy Tsukamoto,” J. Pengemb. Teknol. Inf. dan Komput., vol. 5, no. 12, pp. 5329–5338, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

M. Ichwan, M. G. Husada, and G. N. F H, “Penerapan Fuzzy Logic Tsukamoto pada Pembangunan Kandang Ayam Pintar,” MIND J., vol. 1, no. 1, pp. 11–14, 2018, doi: 10.26760/mindjournal.v1i2.11-14.

A. R. Baskara et al., “Diagnosis Penyakit Saluran Pencernaan Berbasis Android Menggunakan Metode Fuzzy Inference System TSUKAMOTO,” INFOTECH J., vol. 8, no. 2, 2022.

B. Garinanto, S. Adi Wibowo, and D. Rudhistiar, “Penerapan Metode Fuzzy Untuk Smart Farming Hamster Berbasis Iot,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 693–699, 2021, doi: 10.36040/jati.v5i2.3752.

R. Handayani, “Sistem Pakar Mendiagnosa Penyakit Pada Ternak Sapi Potong Menggunakan Fuzzy Tsukamoto,” pp. 1–6, 2010.

R. P. Nugroho, B. D. Setiawan, and M. T. Furqon, “Penerapan Metode Fuzzy Tsukamoto untuk Menentukan Harga Sewa Hotel ( Studi Kasus : Gili Amor Boutique Resort , Dusun Gili Trawangan , Nusa Tenggara Barat ),” J. Pengemb. Teknol. lnformasi dan llmu Komput., vol. 3, no. 3, pp. 2581–2588, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4755

S. H. Widiastuti and N. Imansyah, “Monitoring status gizi balita berbasis android dengan metode Fuzzy dalam mewujudkan smart city kota Bontang,” Seminastika, vol. 2, no. 1, pp. 24–28, 2018.

R. APRILIYANI, L. KRISTIANA, and M. M. BARMAWI, “Metode Fuzzy Logic pada Sistem Pemantauan dan Pemberian Pakan Kucing Berbasis Smartphone,” MIND J., vol. 5, no. 1, pp. 24–38, 2021, doi: 10.26760/mindjournal.v5i1.24-38.

D. D. Kusumaningtyas, M. Hasbi, and H. Wijayanto, “Sistem Pakar Diagnosa Penyakit Saluran Pernafasan Dengan Metode Fuzzy Tsukamoto,” J. Teknol. Inf. dan Komun., vol. 7, no. 2, pp. 1–7, 2019, doi: 10.30646/tikomsin.v7i2.431.

D. P. Wijaya, D. Harisandi, A. Pramuntadi, and D. H. Gutama, “Implementasi Metode Tsukamoto Untuk Sistem Pemilihan Makanan Sehat Bagi Ibu Hamil,” Indones. J. Bus. Intell., vol. 6, no. 1, 2023, doi: 10.21927/ijubi.v6i1.3261.

C. Debora Mait, J. Armando Watuseke, P. David Gibrael Saerang, S. Reynaldo Joshua, and U. Sam Ratulangi, “Sistem Pendukung Keputusan Menggunakan Fuzzy Logic Tahani Untuk Penentuan Golongan Obat Sesuai Dengan,” J. Media Infotama, vol. 18, no. 2, p. 344, 2022.

A. S. Putra, S. Budiprayitno, and L. P. Rahayu, “Perancangan Sistem Kontrol pH dan Suhu Air Menggunakan Metode Fuzzy dan Terintregasi dengan Internet of Things (IoT) pada Budidaya Ikan Hias,” J. Tek. ITS, vol. 10, no. 2, pp. 444–449, 2021, doi: 10.12962/j23373539.v10i2.74902.

A. Rangga Saputra, A. Panji Sasmito, and D. Rudhistiar, “Rancang Bangun Pakan Dan Filterisasi Pada Budidaya Ikan Channa Menggunakan Metode Fuzzy Berbasis Arduino,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 668–675, 2021, doi: 10.36040/jati.v5i2.3744.

D. Y. Darmawi, G. W. Nurcahyo, and S. Sumijan, “Fuzzy Sistem Fuzzy Menggunakan Metode Sugeno Dalam Akurasi Penentuan Suhu Kandang Ayam Pedaging,” J. Inf. dan Teknol., vol. 3, pp. 72–77, 2020, doi: 10.37034/jidt.v3i2.95.

R. R. Putra, N. A. Putri, and C. Wadisman, “Village Fund Allocation Information System for Community Empowerment in Klambir Lima Kebun Village,” J. Appl. …, vol. 3, no. 2, pp. 98–104, 2022, [Online]. Available: https://journal.yrpipku.com/index.php/jaets/article/view/681%0Ahttps://journal.yrpipku.com/index.php/jaets/article/download/681/467

Y. N. Andi Cuhwanto and D. A. R, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means,” Petir, vol. 15, no. 1, pp. 48–56, 2021, doi: 10.33322/petir.v15i1.1358.

N. Ahsina, F. Fatimah, and F. Rachmawati, “Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. Infomasi Terap., vol. 8, no. 3, 2022, doi: 10.33197/jitter.vol8.iss3.2022.883.

R. R. Putra and C. Wadisman, “Penentuan Siswa Berprestasi Dengan Metode Simple Additive Weighting Berbasis Web,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 3, no. 1, pp. 25–31, 2020, doi: 10.31539/intecoms.v3i1.1293.

S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,” J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

W. Romadhona, B. Indarmawan Nugroho, and A. Alim Murtopo, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means,” J. Minfo Polgan, vol. 11, no. 2, pp. 100–104, 2022, doi: 10.33395/jmp.v11i2.11797.

S. Wahyuni, kana S. Saragih, and M. I. Perangin-angin, “Implemntasi Metode Decision Tree C4.5 Untuk Menganalisa Mahasiswa Dop Out,” ethos, vol. 6, no. 1, pp. 42–51, 2018.

S. Wahyuni, D. J. Sari, H. Hernawaty, and N. Afifah, “Inovasi Penjualan Ternak Sapi dan Kambing Berbasis Website Menggunakan Metode Agile Scrumban,” Brahmana J. Penerapan Kecerdasan Buatan, vol. 4, no. 1A, pp. 93–99, 2022.

S. Wahyuni, Suherman, and K. P. Harahap, “Implementasi Data Mining dalam Memprediksi Stok Barang Menggunakan Algoritma Apriori,” vol. 5, pp. 67–71, 2018.

Downloads

Published

30-11-2023

How to Cite

Randi Rian Putra, Sri Handayani, & Cendra Wadisman. (2023). Optimizing the Diet of Diabetes Mellitus Sufferers Through Food Mapping Using the Fuzzy Sugeno Method. International Journal Of Computer Sciences and Mathematics Engineering, 2(2), 254–263. https://doi.org/10.61306/ijecom.v2i2.50