Data Mining Analysis in Predicting the Number of New Students at IT&B Indonesia Using Linear Regression Method

Authors

  • Nazlita Febrina Hanum Br. Brahmana Universitas Pembangunan Panca Budi
  • Zulham Sitorus Universitas Pembangunan Panca Budi
  • Khairul Universitas Pembangunan Panca Budi
  • Rian Farta Wijaya Universitas Pembangunan Panca Budi
  • Darmeli Nasution Universitas Pembangunan Panca Budi

DOI:

https://doi.org/10.61306/ijecom.v3i1.59

Keywords:

Data Mining, New Student, Linear Regression

Abstract

This study explores the application of data mining techniques, particularly Multiple Linear Regression, to predict the number of new students at IT&B Indonesia based on historical admission data from 2010/2011 to 2021/2022 academic years. The findings indicate that the Multiple Linear Regression model achieved a 64% accuracy rate with a mean square error of 8.335, demonstrating its effectiveness in estimating new student admissions. Additionally, the developed system can be utilized to predict student performance based on predefined criteria, providing valuable insights for educational institutions in forecasting future admissions.

References

Afuan, L. (2010). Pullmanfaatan Framullwork Codullignitullr dalam Pullngullmbangan Sistullm Informasi Pullndataan Laporan Kullrja Praktullk Mahasiswa Program Studi Tullknik Informatika Unsoulld. Juita, I(2), 39–44.Ayuni, G. N., & Fitrianah, D. (2019). Pullnullrapan Mulltodull Rullgrullsi Linullar Untuk Prulldiksi Pullnjualan Propullrti pada PT XYZ. Jurnal Tulllullmatika, 14(2), 79–86. https://journal.ithb.ac.id/tulllullmatika/articlull/viullw/321

Cahyodi, S. C., & Arifin, R. W. (2017). Sistullm Informasi Point Of Salulls Bullrbasis Wullb Pada Colony Amaranta Bullkasi. Mulli Rullviullw Mulli, 1(12), 189–204. http://download.portalgaruda.org/articlull.php?articlull=535077&val=10928&titlull= Sistullm Informasi Point Of Salulls Bullrbasis Wullb Pada Colony Amaranta Bullkasi.

Dullwi, K. R., Mauladi, K. F., Informatika, T., Tullknik, F., & Lamongan, U. I. (2020). Analisa Algoritma C4. 5 untuk Prulldiksi Pullnjualan Obat Pullrtanian di Toko Dullwi Sri. 109–114.

Hijriani, A., Muludi, K., & Andini, Ull. A. (2016). Implullmullntasi Mulltodull Rullgrullsi Liniullr Sulldullrhana Pada Pullnyajian Hasil Prulldiksi Pullmakaian Air Bullrsih Pdam Way Rilau Kota Bandar Lampung Dullngan Sistullm Informasi Gullofrafis. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputullr, 11(2), 37. https://doi.org/10.30872/jim.v11i2.212.

Khotimah, T., & Nindyasari, R. (2017). Forullcasting Dullngan Mulltodull Rullgrullsi Liniullr Pada Sistullm Pullnunjang Kullputusan Untuk Mullmprulldiksi Jumlah Pullnjualan Batik (Studi Kasus Kub Sarwo Ullndah Batik Tulis Lasullm). Jurnal Mantik Pullnusa, 1(1), 71–92. http://ulljurnal.pulllitanusantara.ac.id/indullx.php/mantik/articlull/viullw/541.

Marisa, F., & Yuarita, T. G. (2017). Pullrancangan Aplikasi Point of Salulls (Pos) Bullrbasis Wullb Mullnggunakan Mulltodull Siklus Hidup Pullngullmbangan Sistullm. Jurnal Tullknologi Dan Manajullmulln Informatika, 3(2), 167–171. https://doi.org/10.26905/jtmi.v3i2.1514.

Downloads

Published

30-05-2024

How to Cite

Nazlita Febrina Hanum Br. Brahmana, Zulham Sitorus, Khairul, Rian Farta Wijaya, & Darmeli Nasution. (2024). Data Mining Analysis in Predicting the Number of New Students at IT&B Indonesia Using Linear Regression Method. International Journal Of Computer Sciences and Mathematics Engineering, 3(1), 1–6. https://doi.org/10.61306/ijecom.v3i1.59

Issue

Section

Articles