Analysis and Exploration of Clustering Algorithms for New Student Segmentation

Authors

  • Langgeng Restuono Universitas Pembangunan Panca Budi
  • Andysah Putera Utama Siahaan Universitas Pembangunan Panca Budi
  • Rian Farta Wijaya Universitas Pembangunan Panca Budi
  • Zulham Sitorus Universitas Pembangunan Panca Budi
  • Muhammad Iqbal Universitas Pembangunan Panca Budi

DOI:

https://doi.org/10.61306/ijecom.v3i1.61

Keywords:

Clustering, K-Means, Centroid Initialization, Random Centroids, Manual Centroids, Analysis and Interpretation

Abstract

Clustering analysis is a crucial technique in data processing and pattern understanding. In this study, we compare the clustering results using the k-Means algorithm with two different approaches to centroid initialization: random centroids and manual centroids. The dataset consists of three observed variables. The analysis results indicate significant differences in centroid placement and cluster formation between the two approaches. The random centroid approach yields three clusters with centroids located at different coordinates: Cluster 1 [1.76, 2.5, 10.88], Cluster 2 [1.60, 1.87, 2.23], and Cluster 3 [1.64, 1.568, 15.88]. On the other hand, the manual centroid approach generates three clusters with centroids manually specified: Cluster 1 [1.64, 1.81, 14.84], Cluster 2 [1.61, 1.901, 2.04], and Cluster 3 [1.75, 1.7, 6.8]. The analysis and interpretation of these differences highlight the sensitivity of the k-Means algorithm to centroid initialization. The implications of these findings provide insights into the importance of selecting the appropriate initialization method in clustering analysis to ensure consistent and meaningful results. This research makes a significant contribution to understanding the factors influencing clustering results and can serve as a guide for researchers and practitioners in choosing clustering approaches that are suitable for their data and analytical goals.

References

Budiman, Ramdani. "Penerapan Data Mining Untuk Menentukan Lokasi Promosi Penerimaan Mahasiswa Baru Pada Universitas Banten Jaya (Metode K-Means Clustering)." ProTekInfo (Pengembangan Riset dan Observasi Teknik Informatika) 6 (2019): 6-14.

Bellanov, Agrienta. "K-Means Clustering Analysis Untuk Menentukan Strategi Promosi Kampus." Jurnal Teknik Industri: Jurnal Hasil Penelitian dan Karya Ilmiah dalam Bidang Teknik Industri 9.1 (2023): 259-268.

Khusnuliawati, Hardika, and Dhian Riskiana Putri. "Identifikasi Segmen Pasar Mahasiswa Perguruan Tinggi Menggunakan Analisis Klaster Berdasarkan Variabel Psikografis." Risenologi 6.1b (2021): 44-49.

Annizar, Anas Ma'ruf, and Miftah Arifin. "Perbedaan Prestasi Belajar Mahasiswa Ditinjau dari Jalur Seleksi Masuk Perguruan Tinggi." SAP (Susunan Artikel Pendidikan) 5.3 (2021).

Muhima, Rani Rotul, et al. Kupas Tuntas Algoritma Clustering: Konsep, Perhitungan Manual, dan Program. Penerbit Andi, 2022.

Arsyad, Aisyah Tiar, and Hanny Nurlatifah. "Penerapan k-means clustering dalam menentukan Strategi promosi Universitas Al Azhar Indonesia." (2022).

Burk, Scott, and Gary D. Miner. It's All Analytics!: The Foundations of Al, Big Data and Data Science Landscape for Professionals in Healthcare, Business, and Government. CRC Press, 2020.

Sun, Zhaohao. "Data, Analytics, and Intelligence." Journal of Computer Science Research 5.4 (2023): 43-57.

Ajimotokan, Habeeb Adewale. Research Techniques: Qualitative, Quantitative and Mixed Methods Approaches for Engineers. Springer Nature, 2022.

Mueller, Jennifer J., et al. Understanding research in early childhood education: Quantitative and qualitative methods. Taylor & Francis, 2024.

Amin, Nur Fadilah, Sabaruddin Garancang, and Kamaluddin Abunawas. "Konsep Umum Populasi dan Sampel dalam Penelitian." PILAR 14.1 (2023): 15-31.

Abriyanto, Arif, and Natalia Damastuti. "SEGMENTASI MAHASISWA DENGAN ‘UNSUPERVISED’ALGORITMA GUNA MEMBANGUN STRATEGI MARKETING PENERIMAAN MAHASISWA." Insand Comtech: Information Science and Computer Technology Journal 4.2 (2019).

Bahri, S. (2018). Metodologi Penelitian Bisnis Lengkap dengan teknik Pengolahan Data SPSS. Yogyakarta: CV ANDI OFFSET.

Suhanda, Yogasetya, Ike Kurniati, and Siti Norma. "Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik." Jurnal Teknologi Informatika dan Komputer 6.2 (2020): 12-20.

Sujarweni, Wiratna. (2020). Metodologi Penelitian Bisnis & Ekonomi. Yogjakarta

Abriyanto, Arif, and Natalia Damastuti. "SEGMENTASI MAHASISWA DENGAN ‘UNSUPERVISED’ALGORITMA GUNA MEMBANGUN STRATEGI MARKETING PENERIMAAN MAHASISWA." Insand Comtech: Information Science and Computer Technology Journal 4.2 (2019).

Hendryadi, Tricahyadinata, I., & Zannati, R. (2019). Metode Penelitian: Pedoman Penelitian Bisnis dan Akademik. Jakarta: Lembaga Pengembagan Manajemen dan Publikasi Imperium (LPMP Imperium)

Wu, Junjie. Advances in K-means clustering: a data mining thinking. Springer Science & Business Media, 2012.

Rijali, Ahmad. "Analisis data kualitatif." Alhadharah: Jurnal Ilmu Dakwah 17.33 (2019): 81-95.

Downloads

Published

30-05-2024

How to Cite

Langgeng Restuono, Andysah Putera Utama Siahaan, Rian Farta Wijaya, Zulham Sitorus, & Muhammad Iqbal. (2024). Analysis and Exploration of Clustering Algorithms for New Student Segmentation. International Journal Of Computer Sciences and Mathematics Engineering, 3(1), 17–28. https://doi.org/10.61306/ijecom.v3i1.61

Issue

Section

Articles