ANALYSIS OF HEART FAILURE PREDICTION WITH RANDOM FOREST ALGORITHM AND LINEAR REGRESSION

Authors

  • Ismar Hidayat Universitas Pembangunan Panca Budi
  • Muhammad Iqbal Universitas Pembangunan Panca Budi
  • Leni Marlina Universitas Pembangunan Panca Budi
  • Andysah Putera Utama Siahaan Universitas Pembangunan Panca Budi
  • Zulham Sitorus Universitas Pembangunan Panca Budi

Keywords:

Predictions, Heart Failure, Random Forest, Linear Regression, Pembelajaran mesin

Abstract

Predicting the risk of heart failure is an important step in the prevention and early treatment of potentially fatal cardiovascular diseases. This study aims to compare the performance of two machine learning algorithms, namely Random Forest and Linear Regression, in predicting heart failure based on patient data that includes variables such as age, blood pressure, cholesterol levels, and other health history. The results show that the Random Forest algorithm is significantly superior in terms of prediction accuracy compared to Linear Regression, especially on data with a pattern of the number of data used. However, Linear Regression remains relevant in providing more stable results on differences in the amount of data used and has a more significant effect on the variables of heart failure. Therefore, a Random Forest-based prediction model is recommended to predict heart failure if it has a large amount of tranning data, and Linear Regression is recommended for prediction stability. The implementation of this model is expected to help medical practitioners in making more appropriate and accurate decisions to prevent the occurrence of heart failure in high-risk patients.

References

Anooj, P. K. (2012). Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. Journal of King Saud University-Computer and Information Sciences, 24(1), 27-40.

Anooj, P. K. (2013, December). Implementing decision tree fuzzy rules in clinical decision support system after comparing with fuzzy based and neural network based systems. In 2013 International Conference on IT Convergence and Security (ICITCS) (pp. 1-6). IEEE.

Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural networks ensembles. Expert systems with applications, 36(4), 7675-7680

Erlangga, A. W. Otomasi dan analisis hasil prediksi penentuan kualitas air bersih antar classifier menggunakan machine learning (Bachelor's thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta).

Hariyadi, yaya and Wahyuno, Teguh (2020). Machine Learning : Konsep dan Implementasi. Penerbit Gava Media Yogyakarta.

Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., & Li, B. (2018, May). Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In 2018 IEEE symposium on security and privacy (SP) (pp. 19-35). IEEE.

Kamila, S. A., Sulistijowati, R. S., & Susanto, I. (2023, January). Classification of Heart Disease Using Decision Tree and Random Forest. In Seminar Nasional Teknologi & Sains (Vol. 2, No. 1, pp. 7-12).

Normah, N., Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE. Jurnal Teknik Komputer, 8(2), 174-180.

Nursyafitri, Gifa Delyani (2022). Machine learning. https://dqlab.id/machine-learning-model-untuk-prediksi-data-2022 (accessed Oct. 11, 2024).

Rahmadeni, R., & Anggreni, D. (2014). Analisis jumlah tenaga kerja terhadap jumlah pasien RSUD Arifin Achmad Pekanbaru menggunakan metode Regresi Gulud. SITEKIN: Jurnal Sains, Teknologi dan Industri, 12(1), 48-57.

Samuel, O. W., Asogbon, G. M., Sangaiah, A. K., Fang, P., & Li, G. (2017). An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert systems with applications, 68, 163-172

Suryanegara, G. A. B., & Purbolaksono, M. D. (2021). Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 114-122.

Thesiana, Yumi, (2024). Gagal Jantung. Kementrian Kesehatan Kementerian Kesehatan Republik Indonesia https://ayosehat.kemkes.go.id/gagal-jantung (accessed Oct. 11, 2024).

Utomo, D. P., Sirait, P., & Yunis, R. (2020). Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0. Jurnal Media Informatika Budidarma, 4(4), 994-1006.

Uyar, K., & İlhan, A. (2017). Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks. Procedia computer science, 120, 588-593.

Wuryani, N., & Agustiani, S. (2021). Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasisCitra CT Scan. Jurnal Khatulistiwa Informatika, 7(2), 187-193.

Downloads

Published

03-03-2025

How to Cite

Ismar Hidayat, Muhammad Iqbal, Leni Marlina, Andysah Putera Utama Siahaan, & Zulham Sitorus. (2025). ANALYSIS OF HEART FAILURE PREDICTION WITH RANDOM FOREST ALGORITHM AND LINEAR REGRESSION. International Journal Of Computer Sciences and Mathematics Engineering, 4(1), 10–18. Retrieved from https://ijecom.org/index.php/IJECOM/article/view/99

Issue

Section

Articles