ANALYSIS OF HEART FAILURE PREDICTION WITH RANDOM FOREST ALGORITHM AND LINEAR REGRESSION
Keywords:
Predictions, Heart Failure, Random Forest, Linear Regression, Pembelajaran mesinAbstract
Predicting the risk of heart failure is an important step in the prevention and early treatment of potentially fatal cardiovascular diseases. This study aims to compare the performance of two machine learning algorithms, namely Random Forest and Linear Regression, in predicting heart failure based on patient data that includes variables such as age, blood pressure, cholesterol levels, and other health history. The results show that the Random Forest algorithm is significantly superior in terms of prediction accuracy compared to Linear Regression, especially on data with a pattern of the number of data used. However, Linear Regression remains relevant in providing more stable results on differences in the amount of data used and has a more significant effect on the variables of heart failure. Therefore, a Random Forest-based prediction model is recommended to predict heart failure if it has a large amount of tranning data, and Linear Regression is recommended for prediction stability. The implementation of this model is expected to help medical practitioners in making more appropriate and accurate decisions to prevent the occurrence of heart failure in high-risk patients.
References
Anooj, P. K. (2012). Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. Journal of King Saud University-Computer and Information Sciences, 24(1), 27-40.
Anooj, P. K. (2013, December). Implementing decision tree fuzzy rules in clinical decision support system after comparing with fuzzy based and neural network based systems. In 2013 International Conference on IT Convergence and Security (ICITCS) (pp. 1-6). IEEE.
Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural networks ensembles. Expert systems with applications, 36(4), 7675-7680
Erlangga, A. W. Otomasi dan analisis hasil prediksi penentuan kualitas air bersih antar classifier menggunakan machine learning (Bachelor's thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta).
Hariyadi, yaya and Wahyuno, Teguh (2020). Machine Learning : Konsep dan Implementasi. Penerbit Gava Media Yogyakarta.
Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., & Li, B. (2018, May). Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In 2018 IEEE symposium on security and privacy (SP) (pp. 19-35). IEEE.
Kamila, S. A., Sulistijowati, R. S., & Susanto, I. (2023, January). Classification of Heart Disease Using Decision Tree and Random Forest. In Seminar Nasional Teknologi & Sains (Vol. 2, No. 1, pp. 7-12).
Normah, N., Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE. Jurnal Teknik Komputer, 8(2), 174-180.
Nursyafitri, Gifa Delyani (2022). Machine learning. https://dqlab.id/machine-learning-model-untuk-prediksi-data-2022 (accessed Oct. 11, 2024).
Rahmadeni, R., & Anggreni, D. (2014). Analisis jumlah tenaga kerja terhadap jumlah pasien RSUD Arifin Achmad Pekanbaru menggunakan metode Regresi Gulud. SITEKIN: Jurnal Sains, Teknologi dan Industri, 12(1), 48-57.
Samuel, O. W., Asogbon, G. M., Sangaiah, A. K., Fang, P., & Li, G. (2017). An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction. Expert systems with applications, 68, 163-172
Suryanegara, G. A. B., & Purbolaksono, M. D. (2021). Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 114-122.
Thesiana, Yumi, (2024). Gagal Jantung. Kementrian Kesehatan Kementerian Kesehatan Republik Indonesia https://ayosehat.kemkes.go.id/gagal-jantung (accessed Oct. 11, 2024).
Utomo, D. P., Sirait, P., & Yunis, R. (2020). Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0. Jurnal Media Informatika Budidarma, 4(4), 994-1006.
Uyar, K., & İlhan, A. (2017). Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks. Procedia computer science, 120, 588-593.
Wuryani, N., & Agustiani, S. (2021). Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasisCitra CT Scan. Jurnal Khatulistiwa Informatika, 7(2), 187-193.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal Of Computer Sciences and Mathematics Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGHT
Copyright of any article in the International Journal of Computer Sciences and Mathematics Engineering is held by the author under a Creative Commons Attribution-ShareAlike 4.0 International License.
- The author acknowledges that the International Journal Of Computer Sciences and Mathematics Engineering has the right to be the first to publish under a Creative Commons Attribution-ShareAlike 4.0 International License – CC BY-SA.
- Authors can submit articles separately, arrange for non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional respository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the International Journal of Computer Sciences and Mathematics Engineering.
LICENCE
The International Journal Of Computer Sciences and Mathematics Engineering is published under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License. This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivatives of this material for any purpose, including commercial purposes, as long as they give credit to the Author for the original work.